65 research outputs found

    Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding

    Get PDF
    We fabricated nanowires of a conjugated oligomer and applied them to organic field-effect transistors (OFETs). The supramolecular assemblies of a thienoisoindigo-based small molecular organic semiconductor (TIIG-Bz) were prepared by co-precipitation with 2-bromobenzaldehyde (2-BBA) via a combination of halogen bonding (XB) between the bromide in 2-BBA and electron-donor groups in TIIG-Bz, and chalcogen bonding (CB) between the aldehyde in 2-BBA and sulfur in TIIG-Bz. It was found that 2-BBA could be incorporated into the conjugated planes of TIIG-Bz via XB and CB pairs, thereby increasing the pi - pi stacking area between the conjugated planes. As a result, the driving force for one-dimensional growth of the supramolecular assemblies via pi - pi stacking was significantly enhanced. TIIG-Bz/2-BBA nanowires were used to fabricate OFETs, showing significantly enhanced charge transfer mobility compared to OFETs based on pure TIIG-Bz thin films and nanowires, which demonstrates the benefit of nanowire fabrication using 2-BB

    Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study

    Get PDF
    Using density functional theory we investigate the electronic and atomic structure of fullerene-like boron nitride cage structures. The pentagonal ring leads to the formation of homonuclear bonds. The homonuclear bonds are also found in other BN structures having pentagon line defect. The calculated thermodynamics and vibrational spectra indicated that, among various stable configurations of BN-60 cages, the higher number of homonuclear N-N bonds and lower B:N ratio can result in the more stable structure. The homonuclear bonds bestow the system with salient catalytic properties that can be tuned by modifying the B atom bonding environment. We show that homonuclear B-B (B2) bonds can anchor both oxygen and CO molecules making the cage to be potential candidates as catalyst for CO oxidation via Langmuir-Hinshelwood (LH) mechanism. Moreover, the B-B-B (B3) bonds are reactive enough to capture, activate and hydrogenate CO2 molecules to formic acid. The observed trend in reactivity, viz B3 > B2 > B1 is explained in terms of the position of the boron defect state relative to the Fermi level.close0

    Ultrasound and solvothermal synthesis of a new urea-based metal-organic framework as a precursor for fabrication of cadmium(II) oxide nanostructures

    No full text
    Dramatic advances in nanostructured MOFs have been strongly promoted by the introduction and development of new synthetic methods that control the size, morphology, and nano/microstructure. High intensity ultrasound method suggests an environmentally friendly, facile and versatile synthetic method to these nanostructured materials that are complicated to synthesize by commonly used methods. Both Solvothermal and sonochemical methods were used to synthesize the new urea-based metal-organic framework [Cd(L1)(DMF)3] (1). Compound 1 was structurally characterized by using X-ray crystallography and spectroscopically by different techniques. The effect of concentration of the initial reagents, time of sonication and sonication power on size and mor- phology has been studied. The results indicate that decreasing concentration of initial reagents, along with increasing ultrasonic radiation time, cause a dramatic effect on the size and morphology of compound 1. Calcination of the nano-sized plate-like particles of compound 1 at 550 \ub0C under air atmosphere yields CdO nanoparticles

    Size-Selective Urea-Containing Metal-Organic Frameworks as Receptors for Anions

    No full text
    Anion recognition by neutral hosts that function in aqueous solution is an emerging area of interest in supramolecular chemistry. The design of neutral architectures for anion recognition still remains a challenge. Among neutral anion receptor systems, urea and its derivatives are considered as "privileged groups"in supramolecular anion recognition, since they have two proximate polarized N-H bonds exploitable for anion recognition. Despite promising advancements in urea-based structures, the strong hydrogen bond drives detrimental self-association. Therefore, immobilizing urea fragments onto the rigid structures of a metal-organic framework (MOF) would prevent this self-association and promote hydrogen-bond-accepting substrate recognition. With this aim, we have synthesized two new urea-containing metal-organic frameworks, namely [Zn(bpdc)(L2)]n\ub7nDMF (TMU-67) and [Zn2(bdc)2(L2)2]n\ub72nDMF (TMU-68) (bpdc = biphenyl-4,4\u2032-dicarboxylate; bdc = terephthalate; L2 = 1,3-bis(pyridin-4-yl)urea), and we have assessed their recognition ability toward different anions in water. The two MOFs show good water stability and anion affinity, with a particular selectivity toward dihydrogen arsenate for TMU-67 and toward fluoride for TMU-68. Crystal structure characterizations reveal 3-fold and 2-fold interpenetrated 3D networks for TMU-67 and TMU-68, respectively, where all single interpenetrated networks are hydrogen bonded to each other in both cases. Despite the absence of self-quenching, the N-H urea bonds are tightly hydrogen bonded to the oxygen atoms of the dicarboxylate ligands and cannot be directly involved in the recognition process. The good performance in anion sensing and selectivity of the two MOFs can be ascribed to the network interpenetration that, shaping the void, creates monodimensional channels, decorated by exposed oxygen atom sites selective for arsenate sensing in TMU-67 and isolated cavities, covered by phenyl groups selective for fluoride recognition in TMU-68

    Engineering Metabolism of Chimeric Antigen Receptor (CAR) Cells for Developing Efficient Immunotherapies

    No full text
    Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells

    Delamination of 2D coordination polymers : the role of solvent and ultrasound

    Get PDF
    Two novel cadmium-based 2D coordination polymers have been synthesized and characterized. Experimental results evidence that the best delamination processes occurs when weak interactions dominate the cohesion between layers and solvent molecules are occluded within the crystalline network. In this case, the delamination of the crystals occurs spontaneously in water. On top of that, and thanks to the high stability of the resulting (flake) colloidal dispersions, we have completed a detailed study of the sonication assisted delamination impact by: I) comparison of two different sonication approaches (bath vs. tip sonication) and II) optimization of final flake morphology and yield by controlling solvent and sonication time. Our results definitely pave the way for the fabrication and implementation of 2D coordination polymers using ultrasound
    corecore